中文字幕色综合久久_亚洲欧美日韩国产精品26u_一级特黄色毛片免费看_免费观看一级毛片

三羧酸循環

(重定向自TCA
跳轉到: 導航, 搜索
解釋更清晰、明確

乙酰CoA和草酰乙酸縮合成有三個羧基的檸檬酸, 檸檬酸經一系列反應, 一再氧化脫羧, 經α酮戊二酸琥珀酸, 再降解成草酰乙酸。而參與這一循環的丙酮酸的三個碳原子, 每循環一次, 僅用去一分子乙酰基中的二碳單位, 最后生成兩分子的CO2 , 并釋放出大量的能量。

檸檬酸循環(Citric acid cycle):也稱為三羧酸循環(TriCarboxylic Acid cycle,TCA),Krebs循環。是用于乙酰CoA中的乙酰基氧化成CO2的酶促反應循環系統,該循環的第一步是由乙酰CoA與草酰乙酸縮合形成檸檬酸。

一、三羧酸循環的過程

乙酰CoA進入由一連串反應構成的循環體系,被氧化生成H2O和CO2。由于這個循環反應開始于乙酰CoA與草酰乙酸(oxaloacetic acid)縮合生成的含有三個羧基的檸檬酸,因此稱之為三羧酸循環或檸檬酸循環(citrate cycle)。在三羧酸循環中,檸檬酸合成酶催化的反應是關鍵步驟,草酰乙酸的供應有利于循環順利進行。 其詳細過程如下:

(1)乙酰-CoA進入三羧酸循環

乙酰CoA具有硫酯鍵,乙酰基有足夠能量與草酰乙酸的羧基進行醛醇型縮合。首先檸檬酸合酶組氨酸殘基作為堿基與乙酰CoA作用,使乙酰CoA的甲基上失去一個h+,生成的碳陰離子對草酰乙酸的羰基碳進行親核攻擊,生成檸檬酰CoA中間體,然后高能硫酯鍵水解放出游離的檸檬酸,使反應不可逆地向右進行。該反應由檸檬酸合成酶(citrate synthase)催化,是很強的放能反應

由草酰乙酸和乙酰CoA合成檸檬酸是三羧酸循環的重要調節點,檸檬酸合成酶是一個變構酶,ATP是檸檬酸合成酶的變構抑制劑,此外,α-酮戊二酸(α-ketoglutarate)、NADH能變構抑制其活性,長鏈脂酰CoA也可抑制它的活性,AMP可對抗ATP的抑制而起激活作用。

(2)異檸檬酸形成

檸檬酸的叔醇基不易氧化,轉變成異檸檬酸(isocitrate)而使叔醇變成仲醇,就易于氧化,此反應由順烏頭酸酶催化,為一可逆反應。

(3)第一次氧化脫羧

在異檸檬酸脫氫酶作用下,異檸檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinic acid)的中間產物,后者在同一酶表面,快速脫羧生成α-酮戊二酸(α-ketoglutarate)、NADH和co2,此反應為β-氧化脫羧,此酶需要Mg2+作為激活劑

此反應是不可逆的,是三羧酸循環中的限速步驟,ADP是異檸檬酸脫氫酶的激活劑,而ATP,NADH是此酶的抑制劑。

(4)第二次氧化脫羧

在α-酮戊二酸脫氫酶系作用下,α-酮戊二酸氧化脫羧生成琥珀酰CoA(succincyl CoA)、NADH.H+和CO2,反應過程完全類似于丙酮酸脫氫酶系催化的氧化脫羧,屬于α氧化脫羧,氧化產生的能量中一部分儲存于琥珀酰CoA的高能硫酯鍵中。

α-酮戊二酸脫氫酶系也由三個酶(α-酮戊二酸脫羧酶硫辛酸琥珀酰基轉移酶、二氫硫辛酸脫氫酶)和五個輔酶(tpp、硫辛酸、hscoa、NAD+、FAD)組成。

此反應也是不可逆的。α-酮戊二酸脫氫酶復合體受ATP、GTP、NADH和琥珀酰CoA抑制,但其不受磷酸化/去磷酸化的調控。

(5)底物磷酸化生成ATP

在琥珀酸硫激酶(succinate thiokinase)的作用下,琥珀酰CoA的硫酯鍵水解,釋放的自由能用于合成GTP(三磷酸鳥苷 guanosine triphosphate),在細菌和高等生物可直接生成ATP,在哺乳動物中,先生成GTP,再生成ATP,此時,琥珀酰CoA生成琥珀酸和輔酶A

(6)琥珀酸脫氫

琥珀酸脫氫酶(succinate dehydrogenase)催化琥珀酸氧化成為延胡索酸(fumarate)。該酶結合在線粒體內膜上,而其他三羧酸循環的酶則都是存在線粒體基質中的,這酶含有鐵硫中心和共價結合的FAD,來自琥珀酸的電子通過FAD和鐵硫中心,然后進入電子傳遞鏈到O2,丙二酸是琥珀酸的類似物,是琥珀酸脫氫酶強有力的競爭性抑制物,所以可以阻斷三羧酸循環。

(7)延胡索酸的水化

延胡索酸酶僅對延胡索酸的反式(反丁烯二酸) 雙鍵起作用,而對順丁烯二酸(馬來酸)則無催化作用,因而是高度立體特異性的。

(8)生成蘋果酸(malate)

(9)草酰乙酸再生

在蘋果酸脫氫酶(malic dehydrogenase)作用下,蘋果酸仲醇基脫氫氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脫氫酶的輔酶,接受氫成為NADH.H+(圖4-5)。  

目錄

三羰酸循環總結

乙酰CoA+3NAD++FAD+GDP+Pi—→2CO2+3NADH+FADH2+GTP+2H+ +CoA-SH

①CO2的生成,循環中有兩次脫羧基反應(反應3和反應4)兩次都同時有脫氫作用,但作用的機理不同,由異檸檬酸脫氫酶所催化的β氧化脫羧,輔酶是NAD+,它們先使底物脫氫生成草酰琥珀酸,然后在Mn2+或Mg2+的協同下,脫去羧基,生成α-酮戊二酸。

α-酮戊二酸脫氫酶系所催化的α氧化脫羧反應和前述丙酮酸脫氫酶系所催經的反應基本相同。

應當指出,通過脫羧作用生成CO2,是機體內產生CO2的普遍規律,由此可見,機體CO2的生成與體外燃燒生成CO2的過程截然不同。

②三羧酸循環的四次脫氫,其中三對氫原子以NAD+為受氫體,一對以FAD為受氫體,分別還原生成NADH+H+和FADH2。它們又經線粒體內遞氫體系傳遞,最終與氧結合生成水,在此過程中釋放出來的能量使adp和pi結合生成ATP,凡NADH+H+參與的遞氫體系,每2H氧化成一分子H2O,每分子NADH最終產生2.5分子ATP,而FADH2參與的遞氫體系則生成1.5分子ATP,再加上三羧酸循環中有一次底物磷酸化產生一分子ATP,那么,一分子檸檬酸參與三羧酸循環,直至循環終末共生成10分子ATP。

③乙酰CoA中乙酰基的碳原子,乙酰CoA進入循環,與四碳受體分子草酰乙酸縮合,生成六碳的檸檬酸,在三羧酸循環中有二次脫羧生成2分子CO2,與進入循環的二碳乙酰基的碳原子數相等,但是,以CO2方式失去的碳并非來自乙酰基的兩個碳原子,而是來自草酰乙酸。

④三羧酸循環的中間產物,從理論上講,可以循環不消耗,但是由于循環中的某些組成成分還可參與合成其他物質,而其他物質也可不斷通過多種途徑而生成中間產物,所以說三羧酸循環組成成分處于不斷更新之中。

例如 草酰乙酸——→天門冬氨酸

α-酮戊二酸——→谷氨酸

草酰乙酸——→丙酮酸——→丙氨酸

其中丙酮酸羧化酶催化的生成草酰乙酸的反應最為重要。

因為草酰乙酸的含量多少,直接影響循環的速度,因此不斷補充草酰乙酸是使三羧酸循環得以順利進行的關鍵。

三羧酸循環中生成 的蘋果酸和草酰乙酸也可以脫羧生成丙酮酸,再參與合成許多其他物質或進一步氧化。  

三羧酸循環的化學歷程

(1)檸檬酸生成階段 乙酰CoA不能直接被氧化分解,必須改變其分子結構才有可能。乙酰CoA和草酰乙酸在檸檬酸合成酶催化下,弄成檸檬酰CoA,加水生成檸檬酸并放出CoA-SH。

(2)氧化脫羧階段 這個階段包括4個反應,即異檸檬酸的形成、憤檸檬酸的氧化脫羧、α-酮戊二酸氧化和琥珀酸生成,此階段釋放CO2并合成ATP。

(3)草酰乙酸的再生階段 通過上述兩個階段的反應,乙酰CoA的兩個碳以CO2形式釋放了,四碳的草酰乙酸轉變成四碳琥珀酸。 保證后續的乙酰CoA級繼續被氧化脫羧,琥珀酸經過延胡索酸和蘋果酸生成,最后生成草酰乙酸。  

三羧酸循環的生理意義

1.三羧酸循環是機體獲取能量的主要方式。1個分子葡萄糖無氧酵解僅凈生成2個分子ATP,而有氧氧化可凈生成32個ATP,其中三羧酸循環生成20個ATP,在一般生理條件下,許多組織細胞皆從糖的有氧氧化獲得能量。糖的有氧氧化不但釋能效率高,而且逐步釋能,并逐步儲存于ATP分子中,因此能的利用率也很高。

2.三羧酸循環是糖,脂肪和蛋白質三種主要有機物在體內徹底氧化的共同代謝途徑,三羧酸循環的起始物乙酰CoA,不但是糖氧化分解產物,它也可來自脂肪的甘油、脂肪酸和來自蛋白質的某些氨基酸代謝,因此三羧酸循環實際上是三種主要有機物在體內氧化供能的共同通路,估計人體內2/3的有機物是通過三羧酸循環而被分解的。

3.三羧酸循環是體內三種主要有機物互變的聯結機構,因糖和甘油在體內代謝可生成α-酮戊二酸及草酰乙酸等三羧酸循環的中間產物,這些中間產物可以轉變成為某些氨基酸;而有些氨基酸又可通過不同途徑變成α-酮戊二酸和草酰乙酸,再經糖異生的途徑生成糖或轉變成甘油,因此三羧酸循環不僅是三種主要的有機物分解代謝的最終共同途徑,而且也是它們互變的聯絡機構。  

三羧酸循環的調節

如上所述糖有氧氧化分為兩個階段,第一階段糖酵解途徑的調節在糖酵解部分已探討過,下面主要討論第二階段丙酮酸氧化脫羧生成乙酰CoA并進入三羧酸循環的一系列反應的調節。丙酮酸脫氫酶復合體、檸檬酸合成酶、異檸檬酸脫氫酶和α-酮戊二酸脫氫酶復合體是這一過程的限速酶。

丙酮酸脫氫酶復合體受別構調控也受化學修飾調控,該酶復合體受它的催化產物ATP、乙酰CoA和NADH有力的抑制,這種別構抑制可被長鏈脂肪酸所增強,當進入三羧酸循環的乙酰CoA減少,而AMP、CoA和NAD+堆積,酶復合體就被別構激活,除上述別位調節,在脊椎動物還有第二層次的調節,即酶蛋白的化學修飾,PDH含有兩個亞基,其中一個亞基上特定的一個絲氨酸殘基經磷酸化后,酶活性就受抑制,脫磷酸化活性就恢復,磷酸化-脫磷酸化作用是由特異的磷酸激酶和磷酸蛋白磷酸酶分別催化的,它們實際上也是丙酮酸酶復合體的組成,即前已述及的調節蛋白,激酶受ATP別構激活,當ATP高時,PDH就磷酸化而被激活,當ATP濃度下降,激酶活性也降低,而磷酸酶除去PDH上磷酸,PDH又被激活了。

對三羧酸循環中檸檬酸合成酶、異檸檬酸脫氫酶和α-酮戊二酸脫氫酶的調節,主要通過產物的反饋抑制來實現的,而三羧酸循環是機體產能的主要方式。因此ATP/ADP與NADH/NAD+兩者的比值是其主要調節物。ATP/ADP比值升高,抑制檸檬酸合成酶和異檸檬酶脫氫酶活性,反之ATP/ADP比值下降可激活上述兩個酶。NADH/NAD+比值升高抑制檸檬酸合成酶和α-酮戊二酸脫氫酶活性,除上述ATP/ADP與NADH/NAD+之外其它一些代謝產物對酶的活性也有影響,如檸檬酸抑制檸檬酸合成酶活性,而琥珀酰-CoA抑制α-酮戊二酸脫氫酶活性。總之,組織中代謝產物決定循環反應的速度,以便調節機體ATP和NADH濃度,保證機體能量供給。

關于“三羧酸循環”的留言: Feed-icon.png 訂閱討論RSS

目前暫無留言

添加留言

更多醫學百科條目

個人工具
名字空間
動作
導航
推薦工具
功能菜單
工具箱
中文字幕色综合久久_亚洲欧美日韩国产精品26u_一级特黄色毛片免费看_免费观看一级毛片
fc2成人免费人成在线观看播放 | 欧美老肥妇做.爰bbww| av一二三不卡影片| 成人av在线播放网站| 91麻豆高清视频| 欧美精品在线视频| 精品蜜桃在线看| 国产精品色在线| 亚洲品质自拍视频网站| 午夜精品久久久久久久蜜桃app| 婷婷中文字幕一区三区| 国产一区二区看久久| 不卡视频在线观看| 欧美日韩dvd在线观看| 欧美成人福利视频| 中文字幕一区二区日韩精品绯色| 亚洲一区二区三区激情| 另类小说欧美激情| 97久久人人超碰| 91精品国产91热久久久做人人 | 欧美人妇做爰xxxⅹ性高电影| 日韩欧美激情四射| 最新热久久免费视频| 免费成人av在线播放| 99精品久久免费看蜜臀剧情介绍| 欧美精品丝袜中出| 国产精品嫩草久久久久| 日本在线不卡视频| 91亚洲男人天堂| 欧美成人猛片aaaaaaa| 亚洲女子a中天字幕| 狠狠色丁香婷婷综合| 在线观看免费亚洲| 中文字幕国产精品一区二区| 亚洲成人av一区二区三区| 国产白丝网站精品污在线入口| 欧美午夜精品一区| 国产精品久久久久桃色tv| 奇米色777欧美一区二区| 99re这里都是精品| 久久精品人人做| 免费一级欧美片在线观看| 91片黄在线观看| 国产欧美精品国产国产专区| 青青草原综合久久大伊人精品 | 中文字幕av在线一区二区三区| 日韩精品欧美精品| 欧洲中文字幕精品| 亚洲欧洲精品成人久久奇米网| 激情都市一区二区| 日韩网站在线看片你懂的| 夜夜嗨av一区二区三区中文字幕 | 欧美韩日一区二区三区四区| 毛片一区二区三区| 欧美高清视频不卡网| 夜色激情一区二区| 在线视频国内自拍亚洲视频| 中文字幕在线一区免费| 国产精一区二区三区| 日韩美一区二区三区| 免费观看日韩电影| 日韩午夜av电影| 久久精品国产精品亚洲红杏| 日韩欧美不卡一区| 精品一区二区三区免费观看| 日韩欧美国产综合一区 | 国产精品一二三四区| 精品国产乱码久久久久久蜜臀| 免费看黄色91| 久久综合久久综合久久| 国产另类ts人妖一区二区| 国产欧美综合在线观看第十页| 国产一区二区不卡老阿姨| 国产亚洲精品免费| 成人激情av网| 亚洲理论在线观看| 欧美日韩亚洲综合在线 欧美亚洲特黄一级 | 99精品视频在线免费观看| 亚洲欧美国产三级| 97国产一区二区| 精品中文字幕一区二区小辣椒| 久久综合网色—综合色88| 亚洲成人手机在线| 色狠狠色狠狠综合| 五月婷婷综合网| 欧美精品乱码久久久久久按摩| 图片区小说区区亚洲影院| 日韩欧美国产综合在线一区二区三区 | 正在播放亚洲一区| 极品少妇xxxx精品少妇| 中文一区一区三区高中清不卡| 99国产精品国产精品久久| 午夜精品成人在线| 欧美精品一区视频| 一本高清dvd不卡在线观看| 亚洲第一电影网| 久久久久久亚洲综合| 色香蕉成人二区免费| 蜜桃久久av一区| 国产精品久久久久久久蜜臀| 欧美日韩一区成人| 国产成人综合自拍| 午夜精品久久久久影视| 国产亚洲一区二区三区四区| 欧美在线观看18| 国产乱色国产精品免费视频| 一区二区三区影院| 久久影院午夜片一区| 欧洲av在线精品| 风流少妇一区二区| 三级一区在线视频先锋| 国产精品久久777777| 日韩欧美专区在线| 91麻豆国产福利在线观看| 国产一区视频在线看| 亚洲网友自拍偷拍| 国产精品国产三级国产aⅴ原创| 欧美一区二区精品| 欧美亚洲国产一区二区三区| 粉嫩一区二区三区性色av| 久久精品国产亚洲5555| 亚洲第一二三四区| 亚洲精品一二三| 国产精品麻豆欧美日韩ww| 欧美xxx久久| 555www色欧美视频| 欧美日韩在线综合| 日本韩国精品在线| 99精品视频一区二区三区| 国产91露脸合集magnet| 精品影视av免费| 免费高清不卡av| 婷婷久久综合九色综合伊人色| 亚洲欧美电影院| 亚洲视频小说图片| 亚洲人快播电影网| 亚洲欧美国产毛片在线| 国产精品成人免费| 亚洲欧洲日韩av| ●精品国产综合乱码久久久久| 国产精品久久久久久久久动漫| 久久久99精品免费观看不卡| 精品日韩成人av| 精品对白一区国产伦| 精品福利一二区| 久久久国产一区二区三区四区小说| 精品国产自在久精品国产| 欧美变态tickle挠乳网站| 26uuu国产一区二区三区| 久久久国产精品午夜一区ai换脸| 精品国产乱码久久久久久浪潮| 精品88久久久久88久久久| 久久精品一区二区三区四区| 久久久久久久久99精品| 欧美高清在线精品一区| 一区在线观看视频| 成人国产精品免费| 免费在线看成人av| 精品人伦一区二区色婷婷| 精品黑人一区二区三区久久 | 亚洲国产精品一区二区久久| 精品电影一区二区| 国产电影精品久久禁18| 成人h精品动漫一区二区三区| 波多野结衣精品在线| 91在线你懂得| 欧美浪妇xxxx高跟鞋交| 欧美电视剧在线观看完整版| 国产亚洲精品7777| 亚洲精品v日韩精品| 青青草国产精品97视觉盛宴| 国产精品99久久久久久久vr| 色综合久久久久久久久久久| 91精品蜜臀在线一区尤物| 国产欧美日本一区视频| 亚洲影视在线播放| 韩国精品主播一区二区在线观看| 不卡视频在线看| 欧美一区二区三区色| 欧美经典三级视频一区二区三区| 一区二区三区蜜桃网| 韩国av一区二区三区四区| 在线观看一区二区视频| 久久久亚洲午夜电影| 亚洲中国最大av网站| 国产福利一区二区三区视频在线| 在线一区二区三区| 久久精品人人爽人人爽| 香蕉久久夜色精品国产使用方法 | caoporn国产一区二区| 91麻豆精品国产91久久久更新时间| 国产色91在线| 久色婷婷小香蕉久久| 色妹子一区二区| 国产三级精品视频| 久久精品国产一区二区| 欧美性生活久久| 18欧美亚洲精品| 国产精品69毛片高清亚洲| 欧美一区中文字幕|